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Abstract

Object recognition through the use of input from multiple sensors is an important aspect of an
autonomous manipulation system. In tactile object recognition, it is necessary to determine the location

and orientation of object edges and surfaces. We propose a controller that utilizes a tactile sensor in the

feedback loop of a manipulator to track along edges. In our control system, the data from the tactile

sensor is first processed to find edges. The parameters of these edges are then used to generate a

control signal to a hybrid controller. In this paper, we present theory for tactile edge detection, and an

edge tracking controller. In addition, experimental verification of the edge tracking controller is presented.

1. Introduction

Object recognition is an important problem in robotics [18], particularly for autonomous manipulation

systems. In the most general form, it is the problem of determining the environment from sensory data.
The long-term goal of our research is to address the issue of object recognition using tactile data through

the process of exploring the environment by moving the sensor. We call this approach dynamic object

exploration.

Dynamic object exploration involves scheduling moves of the manipulator based on previously

acquired data in order to create a more complete description of the object that is being explored. Thus,
there is an interaction between manipulation and sensing. In dynamic exploration, the scheduled move

affects the data obtained from the sensor, which in turn affects the next move of the manipulator. The

two main steps in dynamic object exploration are: first to create strategies for scheduling manipulator
moves; and second, to develop processing algorithms that will extract features of interest from the

currently available data.

Researchers have actively addressed issues in both of the above mentioned components of dynamic

object exploration and especially so in the context of using tactile data for exploration. Early work in edge

and surface tracking was done by Bajcsy [2]. In this work, the utility of using a tactile sensor to move

about an object to detect features is discussed. Work in object recognition has been done by Allen [1],

Dario, et al [7], Ellis [8], Grimson [10], Klatzky, et al [12], Schneiter [19], and Stansfieid [20]. Some of

these groups [7, 12] take the approach of creating tactile subroutines to find particular features of an

object. In this approach, a feature is extracted by calling a specific subroutine that moves and takes the

appropriate measurements with the sensor. Other groups have taken a completely different approach to

object recognition [8, 10, 19]. They have devised algorithms that determine the best path to approach a

planar polygonal object such that it can be identified in a small number of discrete moves of the sensor.
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The area of tactile image processing has received less attention than object exploration. Work has

proceeded in both pattern recognition [14], and edge finding [16, 9]. Muthukrishnan, et al [16] developed

a vision-like algorithm to detect edges in a tactile image. In contrast, Fearing and Binford [9] use the
impulse response of their sensor to process the signals to measure the curvature of an object.

At Carnegie Mellon, our research group is addressing multi-sensor based manipulation. The goal of
our research is to incorporate position, velocity, force, vision, and tactile sensors in the real-time feedback

loop to create an autonomous manipulator system. The focus of this paper is to descdbe the use of a

tactile sensor in the real-time feedback loop for edge tracking. We call this system a dynamic edge
extractor. Our methodology utilizes a tactile sensor mounted on the end-effector of a manipulator to

obtain data about objects. This system consists of both signal processing and control aspects. The role
of the signal processing module is to find edges in the data from the tactile sensor, while the control

module generates signals to servo the center of the tactile sensor along the edge. In this paper, we

present the theory behind our signal processing and control modules in addition to the results of an

expadmental verification of the dynamic edge extractor using the CMU Direct Drive Arm II and a Lord
LTS-210 Tactile Array Sensor.

2. Signal Processing

In this section, we present a brief description of the signal processing required to detect edges in a

tactile image. Further details are presented in [3]. We propose algorithms that are based on the physical
properties of the tactile sensor. The important charactersitics of our sensor, a Lord LTS-210, are that it
has low spatial resolution and exhibits mechanical cross-talk noise. The noise is due to mechanical

coupling generated by the rubber covering on the sensor. In addition, the background tactile elements

(taxels) have non-zero force readings due only to mechanical cross-talk. Thus, assuming there is no

cross-talk, edges are present at the locations where measured force goes from non-zero to zero. Taking
these properties into account, we have devised an edge detecting algorithm that consists of two steps.

The first step Is an adaptive thresholder to remove cross-talk noise, and the second consists of an edge
detector.

2.1. Adaptive Thresholder

The purpose of this filtering stage in our algorithm is to remove the effects of cross-talk noise from the

tactile image. This operation simplifies the process of detecting edges because with no cross-talk noise,

the locations where the force goes from a non-zero value to zero indicate the edges of planar surfaces.

As will be discussed in the following section, the edge detector does not utilize the magnitudes of the

taxels. It only uses the state of each taxel, whether it is zero or non-zero. Thus the filter may distort

magnitude without adverse side effects. In the ensuing discussion of the thresholding algorithm, we show
how this property is utilized.

Tactile images are very noisy. However, the noise of concern exists only at the edges of objects. In
particular, the noise causes taxels that should read a force of zero to have a non-zero value. These

taxels always have values that are less then their neighbors which are directly beneath the object.

Hence, a thresholder that can choose the appropriate threshold at each taxel may be used to remove the

noise. The threshold value is determined by the neighbors of the current taxel, thus making the

thresholding an adaptive procedure. The proposed algorithm consists of three basic steps:
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1.Ateachpixel,theforcevalueateachofthefour-connectedneighborsischecked.

2. If anyof theseneighborsare largeenoughto havecausedthecurrentpixelto benoise
(greaterthanthreshold),thecurrentpixelissetto 0 (noforce).

3.Otherwisethepixelissettoa constant.

The threshold for a given taxel value is the minimum value that a neighbor must have in order for the

original taxel to be cross-talk. Thus, if all neighbors of a taxel are below threshold, the taxel is considered

to be part of the signal. Threshold values are determined through an experimental procedure which is
described in [3]. Thresholds obtained with our sensor are summarized in Table 2-1. In this table, the first

column is the cross-talk value, and the second column is the smallest value that will cause that cross-talk

value.

Cross Talk I Minimum Neighbor
2

4

4

10

6 20

Table 2-1: Filter Threshold Values

2.2. Edge Detector
Edge detection in the thresholded tactile image is accomplished very efficiently. This is largely due to

the assumption that the measured force goes to zero on one side of an edge, and is some non-zero value
on the other side of the edge. Since the thresholding step filters out the taxels that have non-zero

readings purely due to cross-talk, all that remains for the edge detector to do is to find those taxels that

are neighbors of taxels with zero values.

Our edge detection algorithm consists of the following steps:
1. For each taxel, the eight-connected neighbors are checked.

2. If at least one of these neighbors is 0, the current taxel is copied to the edge image.

3. Otherwise the corresponding taxel inthe edge image is set to 0.

This algorithm is very fast and minimally distorts the size, shape and position of the object. What does
not come out of the algorithm is an estimate of the slope of the edges. Vision researchers have

recognized that slope provides a considerable amount of information about the edge [6, 16]. However,
since tactile images are small, they are simple in structure, and simply finding the position of edges

appears to be sufficient for higher-level processing. In addition, standard vision edge operators that do

provide this information have a number of undesirable characteristics for taction, such as edge spreading

and high computational requirements. The slope of object edges may be obtained by combining the

tactile and position information as the sensor tracks along the edge of an object.
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3. Control

In this section, we discuss the control aspects of dynamic edge extraction [4]. The edge tracker starts

on an edge and uses the extracted parameters of the edge to generate control signals to move along that

edge. The control scheme is hierarchical, with the tactile controller wrapped around a cartesian space
hybrid controller. In the ensuing paragraphs, we describe both the hybrid controller used in our scheme
and the tactile controller.

3.1. Hybrid Controller

Figure 3-1: Sensor Coordinate Frame

Hybrid force and position control provides the ability to control both forces on the end effector and

position of the sensor, [17]. Figure 3ol depicts the sensor frame coordinate axis. The shaded box shows

the face of the sensor. The x and y axis lie in the plane of the sensor, and the z axis (not shown) points
out of the page. For tactile sensing, we control the normal force, and torques about the x and y axis of the
sensor. Position is controlled in the _ plane, and about the z axis of the sensor. Normal force control is

necessary to ensure that the tactile data is within the middle of the operating range [3]. High forces
change the sensor cross-talk characteristics, and low forces result in a very low signal to noise ratio.

Controlling torques about the x and y axis of the sensor allows tracking of surfaces that are not flat.

Specifically, the desired torques are set to zero in order to place the sensor as flush as possible against
the surface. Position control in the plane of the sensor is used because the processed sensor data

provides information about the surface in the _ plane of the sensor. Thus, it is in this plane that we

generate position control signals. Further, we control rotation about the z axis of the sensor. In summary,
the hybrid controller commands position/orientation in three degrees of freedom, and commands

force/torque in the other three. The x and y positions, and the rotation about the z axis of the end effector

are controlled. Torques about the x and y axis, and force along the z axis are controlled.

3.2. Edge Tracking Controller

The edge tracking controller utilizes the edges extracted from tactile images to generate new reference

signals for the hybrid arm controller. Edge tracking is initiated by positioning the tactile sensor on an

edge. Through the edge detection technique discussed in the preceding section and the Modified

Adaptive Hough Transform (MAHT) [5], our implementation of the Hough Transform, the tracker finds the

parameters of the edge. The tracker queries a higher level process to determine which direction to travel,

and begins to move the end effector in that direction. After this startup, the edge tracker functions

independently of higher level input, utilizing a weighted least squares line fit to the data to determine the

current parameters of the line. The Hough Transform is also performed every cycle to determine if any
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Figure 3-2: Block Diagram of Edge Tracking Controller

new edges have become visible. Each time through the loop, the robot's reference position is set to be
the end point of the line segment on the sensor. Thus, if the edge extends past the end of the sensor, the

point where the line intersects the edge of the sensor is selected as the goal point. As the end of a edge
becomes visible to the sensor, the reference position is set to the actual end of the edge. In addition, a

reference velocity is set such that the end effector should arrive at the reference position at the same time

that a new reference position is generated.

Now we consider the controller in detail. Figure 3-2 is a block diagram of the edge tracker. Starting at

the upper right corner of the diagram, the tactile sensor is mounted at the end effector of the manipulator.
The touch image is first thresholded, with the adaptive thresholder algorithm discussed in Section 2. The

thresholded image is then sent to both the edge detector and the force estimator.

The Estimate Force box computes a reference force such that the taxels operate in the middle of their

range. Specifically, it takes the thresholded image and counts the number of taxels that are non-zero.
The number of non-zero taxels multiplied by the area of each taxel is an estimate of the area of the

sensor that is covered by objects. A desired normal force to the sensor may then be generated by

dividing the full scale force by the area in contact with the surface. Full scale force is the total force to
drive all taxels to mid-range when the entire sensor is on a flat surface.

Now, we return to the output of the adaptive threshoider. The threshoided image is passed through the

edge detector (discussed in Section 2) and the result is sent to a weighted least squares line parameter
estimator. This algorithm is used to estimate the slope and intercept of the edge based on the slope and

intercept computed in the previous cycle. All data points in the image are weighted with a gaussian

function, with o = 0.75. A standard deviation of 0.75 was determined from our experimental work to be

the best compromise for both accurate line fitting and adapting of line parameters. The weighting function

is oriented such that data points located on the predicted location of the line have the highest weight. As

the perpendicular distance of a point to the predicted line increases, the weight of that point decreases.
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Use of this weighting function allows us to pass all of the data points to the line fitting algorithm without

pre-processing to remove points that don't appear to be on the line. After the slope and intercept
parameters for the edge are determined, the data points in the image corresponding to that line are

removed. Also, the end points of the line are determined at this stage. These computations are the same

as those performed by the MAHT, the details of which are discussed in [5]. The point removal and end
point computation are part of the Weighted Least Squares box inthe block diagram.

The weighted least squares computation requires an estimate of the parameters of the previous line

segment in the current frame. The Predict Line Parameters box in the diagram performs this operation.
The end effector will have translated and possibly rotated since the previous set of line parameters were

determined. Thus the slope and intercept stored from the previous cycle must be updated to reflect this

change. The predictor calculates the parameters of the current line based on the parameters of the

previous line, the position of the end effector inthe previous cycle, and the current position.

The remaining image is passed on to the Modified Adaptive Hough Transform. The MAHT extracts

multiple lines of arbitrary slope from low signal to noise input data. Any line segments other than the one

being currently tracked will be detected by this algorithm. If there are no edges remaining in the image,

the transform exits, and the parameters and end points determined by weighted least squares are passed
through the Selector. If there are new line segments, the higher level process will be informed. At this

point a new line segment may be selected for tracking. When a new segment is selected, the Selector

passes the parameters determined by MAHT to the predictor, and the end points determined by MAHT to
the Choose Goal Point process.

Finally, Choose Goal Point determines which of the two end points of the segment should be set as the
new reference position for the robot. The choice is made such that the robot continues to move in the

same direction that it has been moving. The reference velocity is set to the distance to the new goal
position divided by the edge tracking sampling period.

3.3. Dlscu=mlon

The design of the edge tracking controller has several desirable properties. Specifically, it handles the

of ends of segments smoothly, it can track curves in addition to straight lines, and the design is tolerant of

any size sensor and data rate. In the following paragraphs, we discuss each of these points in some
detail.

As the tactile sensor approaches the end of a line segment, the controller slows the arm down. When

the center of the sensor reaches the end point, the arm stops. This action is a natural consequence of
the way that new reference points for the hybrid controller are generated. In each cycle, the visible end of

the line segment is chosen as the new reference point. Hence, before the end of the line is under the

sensor, the point where the line leaves the sensor is the reference point. However, as the end point
becomes visible, the controller chooses that point as the goal. This new goal point is closer to the center

of the sensor than the edge of the sensor, and as a result, the velocity of the arm decreases. As the

center of the sensor gets closer to the end of the segment, the arm continues to slow down, until it stops

when the segment end is below the center of the sensor. This allows the arm to accurately position itself

at the end of the segment, and provides an easy way to detect the end of a line segment.

Gradual curves appear as piecewise straight lines to the tactile sensor, allowing it to track them. In
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each cycle, new line parameters are fit to the segment of the curve that is under the sensor by the

weighted least squares method. The parameters that control the weighting are the line parameters from

the previous cycle. The old parameters will not be correct, as both the slope and intercept of the new
section of the curve may be different. However, the old values are close enough to the correct ones that

the weighting function will still be in approximately the correct location, and weighted least squares will

extract the correct new parameters. Thus, the procedure of adapting the line parameters each cycle

allows the system to track curves in addition to straight lines.

The sampling rate of the sensor only affects the maximum tracking velocity. As discussed above, the

reference point for the hybrid controller is set to the intersection of the line with the edge of the sensor.
Further, the reference velocity is set to the length of the new reference trajectory divided by the cycle time

of the controller, 7". As the sampling rate of the sensor decreases, T increases. Thus, desired velocities

are reduced, and the reference points are placed closer together. In this scheme, there is no danger of

the manipulator traveling faster than new data arrives.

4. Experimental Apparatus
In this section, we descdbe the hardware used in our laboratory to implement the tactile edge follower.

The hardware consists of the CMU DD Arm II, control computers, a Lord Force/Torque sensor, and a

Lord LTS 210 Tactile Array Sensor. The tactile control software is run on a Sun 3 computer.

4.1. Control Computers
The hardware of the DD Arm II control system consists of four integral components: the Sun

workstation, the Motorola M68000 microcomputer, the Marinco processors and the TMS-320

microprocessor-based individual joint controllers. All of the computers, with the exception of the Sun are

connected through a common Muitibus backplane. The Eurocard Sun 3 is connected to the backplane

through a serial line and interface card, operating at 4800 Baud. A simple packet based communications

scheme between the M68000 Coordinating Processor and the Sun operates over this serial connection.

Previous control work included the development of the customized Newton-Euler equations for the

CMU DD Arm II which achieved a computation time of 1 ms on the Marinco processor. The details of the

customized algorithm, hardware configuration and the numerical values of the dynamics parameters are

presented in [11]. For tactile sensing, we run a cartesian position controller on one of the Marinco boards,

while gravity compensation torques are computed on the other Marinco. The edge tracking controller

runs on the Sun. Each cycle, new reference positions are sent from the Sun to the 68000, and the

current position is transmitted from the 68000 to the Sun.

4.2. Lord LTS 210 Tactlle Array Sensor

To perform our taction experiments, we added a Lord LTS-210 tactile array sensor to the DD Arm II

system. This sensor is mounted at the end-effector of the robot. The sensor is an array of I0 × 16

elements spaced on 1.8mm centers [13]. Each sensing site is a small plunger mounted such that as it is

depressed, it blocks the light path between a LED and a photodiode [15]. Sixteen different increments in

deflection may be read for each site in the sensor. A sheet of rubber protects the top surface of the

sensor, but also mechanically couples the sensing sites. The sensor is interfaced to the Sun 3 through a

9600 Baud serial line.
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5. Experimental Results with the CMU Direct Drive Arm II

In the ensuing paragraphs, we present the results of two different edge tracking experiments along with

some observations about the use of a tactile sensor for edge tracking. First, we discuss a change in the

thresholds used by the adaptive thresholder, and our strategy for orienting the tactile sensor for edge

tracking. Then, we show the trajectory followed by the manipulator while tracking both straight and

curved edges. The straight edge experiment allows us to view the accuracy of the tracking system, while
the curved edge experiment shows the line parameter adaptation capability.

5.1. Observations

Our experiments to determine the threshold values for the adaptive threshoider show that taxel values

of 2 are noise if there is a four connected neighbor of value 4 or greater [3]. During early edge tracking
experiments, however, we found that after the sensor is moved over a surface for a distance of a few

centimeters random 2's appear in the image. Thus, motion of the sensor against a surface makes force

values of 2 unreliable. To compensate for this phenomena, the adaptive threshoider parameters were

adjusted to always filter out twos regardless of the force on neighbors. No side effects in system

capability are produced by the elimination of 2 as a usable force value. As discussed in Section 3, forces
on the sensor are maintained above 2 for best utilizationof the sensor.

We track edges with the sensor oriented such that it only contacts the edge, and not the surfaces of the

object. Although the algorithms presented in the previous sections are general and may be used to track

edges with the sensor in contact with the surface, we found that the friction between the object and the
sensor is very high when the system is used in this mode. With our approach, two effects combine to

reduce the friction. First, less area is in contact with the surface since the sensor is only contacting a line,

instead of a plane. Second, a lower normal force is required. The normal force necessary to operate the
sensor in the mid-region is proportional to the area of the sensor in contact with the surface. Each taxel in

contact with the surface must experience a force large enough to keep it in operating range. Thus the

normal force that must be exerted by the manipulator is approximately the product of the force each taxel

requires and the number of active taxels. Lower forces on the sensor not only help to reduce the
requirements placed on the manipulator, but also reduce wear on the sensor.

5.2. Edge Tracking

Figure 5-1 shows the result of tracking a straight edge on a metal box. In each cycle, the position of
the end effector was recorded. Dots in the graph correspond to these end effector positions. Thus, the

graph shows the distance between samples in addition to the robot's trajectory. The dashed line in the

figure is an approximation of the location of the actual edge and is included for reference. This reference

line is nearly indistinguishable from the robot's trajectory. In this experiment, the tactile sensor was

oriented such that the long dimension (the 16 rows) was parallel to the direction of travel. The end

effector traced a path starting at (0.47, 0.1) and ending at (0.72, 0.26), with an average speed of 5
mrrYsec.

The plot (Figure 5-1) shows the typical characteristics of our edge tracking system. First, we note that

its accuracy is acceptable and the errors are within the width of the lines in this plot. The position errors

are approximately ].u.. Remember that the tactile sensor resolution is ].8._, and the reference line is

only an approximation to the actual edge. Thus, we conclude that the position error is well within

expectations for the system.
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Figure 5-1: Straight Edge Tracking

Now we discuss the start and end points. At the start, (0.47, 0.1), the velocity does not appear to be as

consistent as the during the remainder of the trajectory. This is to be expected as the end effector moves

to place the center of the tactile array on the line, and the estimated line parameters adapt to the edge.
Further, at the beginning of the line the manipulator is at rest. Thus, the first move request is a step input

to the cartesian controller. Our current controller is somewhat under-damped and requires time to reach

steady motion. On this particular run, the motion of the sensor smoothed out after 4 or 5 cm. At the very
end of the trajectory, the dots become close together, indicating that the end effector slowed down. This

is precisely the action designed into the system. The visible end of the line segment is always chosen as
the new goal point. Thus, as the end of an edge comes into view, the commanded trajectory length, and

end eftector velocity decreases.

The next experiment involved tracking a S shaped object. Figure 5-2 shows the results when the
sensor is started with the long dimension approximately oriented at a positive 45 degree angle to the x

axis. Tracking follows a smooth arc beginning at (0.45, -0.14) and ending at (0.93, 0.21). The primary
result from this experiment is the verHication of the line parameter adaptation. The edge tracker always

attempts to follow a straight line. Curves are taken to be piecewise linear, with line parameters changing

slightly each cycle. The motion shown in Figure 5-2 clearly shows that line parameters are adapting

properly. As with the straight line, we note a small amount of oscillation at the beginning of the trajectory,

and a decrease in velocity at the end.

6. Summary
This paper presents the utilization of a tactile sensor in the feedback loop of a robot controller. There

are two main components to our dynamic edge tracker: tactile signal processing and control. We base

our tactile signal processing algorithms on the physical properties of the sensor. Thus, we accomplish

edge detection by a two step process that first filters mechanical cross-talk noise and second finds edges

by looking for transitions from non-zero to zero force. The controller uses detected line segments to

generate reference signals for a manipulator. During each cycle of the edge tracker, the estimated
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Figure 5-2: S Curve Tracking

parameters of the line are transformed to the current frame. These parameters are used to position a

weighting function for a weighted least squares estimate of the new line. Performing this procedure every
time through the control loop allows the line parameters to continuously adapt. Continuous adaptation of

the parameters, in turn, allows the system to track curved objects in addition to straight objects.
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